MetaBox Guide

Raphael Aggio?; Arno Mayor?; Sophie Reade?; Chris S.J. Probert? and Katya Ruggiero!

January 22, 2015

® 1 - Department of statistics and School of Biological Sciences - The University of Auckland -
Private Bag 92019 - Auckland 1142 - New Zealand.

® 2 - Gastroenterology Unit - Cellular and Molecular Physiology - Institute of Translational Medicine
- University of Liverpool - Nuffield Building, Crown Street, Liverpool L693BX, UK.

1 Introduction

MetaBox is an R package developed to process biological samples analyzed by Gas chro-
matography - Mass Spectrometry (GC-MS). MetaBox identifies and quantifies metabo-
lites described in a mass spectral library, and generates reports in formats that facilitate
further steps of data analysis. This document aims to describe few principles behind
MetaBox and how to use it in metabolomics studies. The analysis of GC-MS-generated
metabolomics datasets using MetaBox can be divided in 3 steps: library building, data
processing and report filtering. Bellow you can find a detailed description of each step.
We recommend reading the article "Aggio et. al (2014) Identifying and quantifying
metabolites by scoring peaks of GC-MS data. BMC Bioinformatics”, which contains
more details about the algorithm behind MetaBox.

1.1 Metabolomics

Metabolomics is a new omics related technology that aims to study the impact of envi-
ronmental and/or genetic perturbations in the metabolome - the complete set of small
molecules (< 1000 Da), or metabolites, present in a biological samples. Metabolites
are intermediates of biochemical reactions and their concentrations depend mostly on
the levels and properties of enzymes. Therefore, the levels of metabolites result from
a complex function involving many regulatory processes occurring inside of the cells
(e.g. regulation of transcription, translation and protein-protein interaction). In the
hierarchical organization of omics technologies, metabolomics is located at the bottom
of the list. Consequently, it concentrates the changes along the flow of information
from gene expression and represents the most downstream effect of genetic or environ-
mental perturbations. The profile of metabolites is then a result of the interaction of

the cell’s genome with its environment and, ultimately, the level of metabolites rep-
resents the phenotype of a biological system. When combined to metabolic networks,
the level of metabolites is considered key information to understand the regulation of
cell’s metabolism, which makes metabolomics one of the most relevant omics-technology
applied to systems biology studies.

The identification and measurement of metabolites per se is not something developed
by metabolomics. Back in 1776, metabolites present in the urine started to be identified
by Matthew Dobson. Since then, identification and measurement of metabolites has
been largely applied in medicine and today it is part of the daily routine of hospitals and
clinics for diagnostics. The innovation brought by metabolomics was the approach of
analyzing several metabolites at the same time and comparing their levels under different
experimental conditions. This approach allows detecting changes in localized regions of
the cell’s metabolism (i.e. gene and metabolic pathways) in response to environmental
or genetic perturbations.

The ultimate goal of metabolomics is to quantify all of the metabolites in a cellular
system in a given state and at a given point in time. However, the high number of
metabolites and their enormous diversity make it virtually impossible. Sample prepara-
tion processes such as metabolite extraction - obtaining metabolites present inside of the
cells - and chemical derivatization - turning metabolites non-volatiles into volatile ones
- are quite specific to a determined class of metabolites (e.g. organic acids). Therefore,
the different methods applied during sample preparation determine the main class of
metabolites reported by metabolomics experiments.

1.2 Gas Chromatography - Mass Spectrometry

GC-MS is a hyphenated analytical technique that combines gas chromatography (GC)
and mass spectrometry (MS) to analyze metabolites present in a mixture of chemicals.
The GC separates metabolites in a mixture, while the MS fragments and detects each of
these metabolites. When a mixture of metabolites is injected into the GC-MS; it firstly
enters the GC, which is composed of a capillary column (stationary phase) inside a
computer-controlled oven. The capillary column is made of chemicals able to selectively
attract metabolites in a mixture while the oven vaporizes metabolites injected into the
capillary column. Entering the GC, vaporized metabolites are then carried through the
capillary column by a mobile phase, which is generally an inert gas such as helium.
While travelling through the capillary column, metabolites are separated according to
their interaction with the stationary phase, where metabolites with weaker interactions
travel faster.

Eluting from the GC, metabolites then enter the ion source. One of the main func-
tions of the ion source is the ionization of metabolites. For that, the most common
ionization techniques are called electron impact ionization (EI) and electrospray ioniza-
tion (ESI). When using EI, metabolites enter the ion source and are bombarded with a
stream of electrons that break them into ion mass fragments (IMFs). These fragments

eventually reach the recorder, a computer that registers the mass to charge ratio (m/z)
and the current or intensity of each fragment. When using EI, a metabolite is expected
to always fragment in the same manner and the intensity of its IMFs tends to always
show the same proportion between them. For example, a compound X generates the
IMFs 102 m/z, 59 m/z, 178 m/z, and 132 m/z; and the intensities of 59 m/z, 178 m/z
and 132 m/z in relation to the IMF 102 m/z are nearly always 0.673, 0.342 and 0.073,
respectively. The fragmentation pattern of each compound is stored in a mass spectrum,
a list of mass to charge ratios with their respective intensities (Figure 1).

A

102 —

B f S N
S =y
59 1 1 *’ —+
2 S il Iy R z
v ' [1 1 I
c R =
g s) =
= 178 il =
"""" £ Ko
Pl &

B2 R S
[=
»

Mass to charge ratio (m/z)

Figure 1: Mass spectrum. Each metabolite analyzed by gas chromatography - mass
spectrometry is represented by a mass spectrum, which describes the fragmentation
pattern of each metabolite and the intensity ratio between mass fragments.

In addition, a metabolite analyzed by GC-MS takes a specific time to travel through
the gas-chromatography column, which is called retention time (RT). Although envi-
ronmental conditions (e.g. humidity, the age of the capillary column, etc.) and other
factors may shift the RT of each compound, a specific metabolite is expected to show
approximately the same RT when analyzed by GC-MS. Therefore, each compound can
be identified by its fragmentation pattern and its approximate RT. As described above,
when a compound elutes or is released from the capillary column, it is bombarded by
electrons and broken into fragments that eventually reach the recorder. However, not
every molecule of this specific compound elutes from the capillary column at the same
time; molecules start to be released at low and increasing quantities until it reaches its
maximum concentration followed by a trail with the last few molecules. Consequently, if
one plots a chromatogram - the intensity detected for a fragment or a group of fragments
plotted in relation to time, each metabolite will be ideally represented by a single peak
(Figure 2).

If the different metabolites in a mixture are well separated when travelling through
the GC, a single peak of the chromatogram is likely to contain all fragments of a single
compound. However, if the GC separation is not efficient, different metabolites coelute
- elute from the capillary column simultaneously - and fragments from these metabo-

Chromatogram

Fragmentation

—— Mass fragment 1
> _.... —— Mass fragment 2
= — ... Mass fragment 3
5 —— Mass fragment 4
et
c

Retention time
(minutes)

-

-———-
-

.’ .’ ."
Q‘b’.?t.'»..
. e,

Capillary column

oOoo O

@

@
(]

®

Figure 2: The capillary column and the gas chromatography - mass spectrometry (GC-
MS) chromatogram. Molecules travel through the capillary column of the gas chro-
matography and start eluting at low and increasing concentration until they reach the
maximum concentration followed by a trail with the last few molecules. These molecules
are then fragmented and finally reach the recorder, which ultimately generates the chro-
matogram. The peak represented in the chromatogram is a result of the number of
molecules from the same metabolite elute from the capillary column per time.

lites will reach the recorder about the same time. Consequently, a single peak of the
chromatogram will contain fragments originated from different metabolites, which con-
siderably difficult their identification. In these cases, a process called deconvolution is
applied, where fragments of each metabolite are analyzed separately in order to distin-
guish multiple metabolites represented in the same peak.

2 Requirements

MetaBox requires 4 additional R packages. These packages are xcms, svDialogs, pander
and MassSpecWavelet. You can install these packages directly from R using:

o ” N

install.packages(c("xcms”; "svDialogs”, "pander”, "MassSpecWavelet”))

or

source(”http://bioconductor.org/biocLite.R”) biocLite(c("xems”, "svDialogs”,
"pander”, "MassSpecWavelet”))

Alternatively, you can download them from the CRAN website (http://cran.r-project.org/)
or from the Bioconductor website (www.bioconductor.org).

Table 1: This table shows an example of the mass spectral library required by MetaBox,
which contains each standard compound’s name (Compound), its expected RT (Egr) in
minutes, the m/z ratio of its four (generally) most IMFs (M;, My, M3 and M,) and the
relative intensities (Ry, R3 and Ry) to that of M;.

Compound ERT MI M2 M3 M4 R2 R3 R4
ethanol 6.644 31 45 46 29 0.777 0.343 0.249
acetone 7.373 43 58 42 39 0.262 0.076 0.044

isopropyl alcohol 7.582 45 43 41 39 0.177 0.103 0.077
acetonitril 7.9056 41 40 39 38 0.546 0.223 0.137
ethyl acetate 10.593 43 45 70 61 0.137 0.116 0.105
1-butanol 13.381 56 41 43 31 0.72 0.543 0.346

2-pentanone 13.9569 43 86 41 71 0.249 0.127 0.109

pyridine 16.426 79 52 51 50 0.564 0.275 0.205
zylenel 20.395 91 106 77 51 0.327 0.08 0.077
zylene2 20.697 91 106 105 77 0.533 0.223 0.115
zylene3 21.803 91 106 105 77 0.488 0.189 0.109

benzaldehyde 25.712 106 105 77 51 0.99 0.935 0.404

indole 38.634 117 90 89 63 0.414 0.313 0.103

3 Library building

The compound identification and quantification performed by MetaBox is based on
a mass spectral library, which we will call here as ionLib. The ionLib contains, for
each compound: its name, its expected retention time, the m/z value of its four most
abundant fragments and the intensity ratios between these fragments in relation to the
most abundant fragment. See Table 1 for an example of ionLib.

The ionLib can be manually built as a comma separated values (.csv) format file or
it can be built using the Automated Deconvolution and Identification System - AMDIS.
Any Excel-like software or even text editors can be used to manually build the ionLib,
while the function buildLib converts an existing AMDIS library to the format required
by MetaBox. If you already have your own mass spectral library built using AMDIS, the

function buildLib allows you to use MetaBox with AMDIS-built existing mass spectral
libraries.

3.1 Manual library building

MetaBox has no function to automatically identify analytes in the absence of an ionLib.
Therefore, manually building an ionLib using only MetaBox can be considerably time-
consuming if compared to building an ionlib through AMDIS and then applying the
buildLib for converting it to the MetaBox format. Thus, if you have access to AMDIS
(for the identification of anlytes one must also have access to the NIST mass spectral
database (http://chemdata.nist.gov/mass-spc/amdis/)), we strongly encourage you to
use them instead of manually building. If you have no access to the NIST database,
you may have to use other databases to identify the analytes or peaks found in the
analyzed samples. The future versions of MetaBox may include functions to facilitate
library building with no need for AMDIS and NIST. Although MetaBox has no function
to automatically identify analytes in the absence of an ionLib, it does contain a function,
plotIons, to obtain the mass spectrum and RT of desired peaks. The function plotIons
can be used to build an ionLib using provisional names for peaks or analytes. Then, in a
further step, the peaks considered important for obtaining the biological interpretation
(e.g. peaks present at significantly different levels across experimental conditions) can be
searched against a mass spectral database. The function plotIons collects the intensity
values of the ion mass fragments present at a specific RT window, plot them in a new
window and returns the mass spectrum associated with a specific time point in the
chromatogram.
The function plotIons can be applied following the steps bellow:

e 1 - Load the MetaBox library;

library (MetaBox)

e 2 - Before applying the function plotIons in the R console, it is important that you
already know the values desired for each of its arguments. Thus, we recommend
you to define the values that best suit your analysis. The possible values for the
arguments of the function plotIons are listed bellow:

— data = this argument may receive the path to the GC-MS file in CDF for-
mat to be analyzed (e.g. /Users/You/Project_1/Condl/Filel.CDF). Alterna-
tively, this argument may be left empty, which will result in a pop up dialog
box allowing the user to select the desired CDF file to be analyzed.

— ions = this argument must receive the specific mass-to-charge ratio values of
the fragments you wish to be highlighted in the plot, if any. For building a

library, you may not know yet the mass values of the most abundant frag-
ments. In this case, you can leave the argument ions empty, set the argument
plotAbundantlons to TRUE and use the argument numberOflons to define
the number of most abundant fragments to be shown in the plot.

— RT = this argument must receive two numerical values, one with the initial
RT value to be analyzed and another with the final RT value. For example,
if you are looking for peaks in the chromatogram region between 10 and 11
minutes, the RT argument will receive the value ¢(10,11). If you need a
shorter time window, define RT = ¢(10.5, 11), for example.

— yscale = this argument must receive two numerical values to define the min-
imun and maximun values to be shown in the Y axis. For example, if yscale
= ¢(0, 200), the Y axis will be showing fragments with intensity between 0
and 200. This argument can be very useful to visualyse peaks closer to the
noise level. The default value of yscale is to set the Y axis from 0 to the
maximun TIC value in the selected RT window.

— color = this argument must receive the name of the color to be used for
coloring the ion mass fragments that will be highlighted in the plot.

— plotGraph = when this argument is set to TRUE, the default value, a plot
with the chromatogram is plot. If plotGraph = FALSE, no chromatogram is
plot. This option is useful if you are only interested in the values of the ion
mass fragments during the RT window defined through the argument RT.

— plotAbundantlons = if this argument is TRUE, the most abundant ion mass
fragments during the RT window defined will be highlighted.

— numberOflons = this argument must receive the number of ion mass frag-
ments to be highlighted in the plot, in addition to the ions defined through
the argument ions.

— save = if save = TRUE, a csv file containing the intensities of the fragments
present in the RT window defined through the argument RT.

— folder = this argument defines the path to the folder where the csv file gen-
erated by plotIons will be stored.

— output = this argument defines the name of the csv file that will be generated

if save = TRUE.

e 3 - Once you know the values of the arguments of the function plotIons you can
apply this function in the R console. For this, follow the code bellow:

fragmentValues <- plotlons(ions = c(define here the ions you want to highlight or
leave it empty), RT = c(define here the time window))

4 - If save = TRUE, a new window will pop up allowing you to choose the folder
where the results will be saved. Select the folder and click on choose;

5 - A new window will open allowing you to select the CDF file to be analyzed.
Select the file and click on choose;

e 6 - A new window will pop up showing you the chromatogram and the desired
number of fragments (See Figure 3);

e 7 - Here comes the most interesting part. When you click on the top of a peak or
any other region of the chromatogram, a new window will pop up with the mass
spectrum associated with the RT where you clicked (See Figure 4). If you click in
a new region of the chromatogram or a different peak, the mass spectrum shown in
the other window will be updated with the mass spectrum associated with the new
region. When you decided that the last clicked region is the best mass spectrum to
represent a peak, you can click on any region bellow the X axis and the results will
be generated. As default, the function plotIons generates a dataframe containing
the intensities of the fragments present during the RT window defined and another
dataframe containing the mass spectrum at the clicked region. The dataframe
containing the mass spectrum shows the mass-to-charge ratios of the fragments as
row.names and the first column contains their relative values and their rations. The
fragment showing the relative value = 1 is the most abundant fragment. MetaBox
provides you with the mass spectrum associated with a peak, however, we can
not provide you with the identification or potential identifications for this peak, as
MetaBox does not include any mass spectral database at the moment. Therefore,
a mass spectral database must be used in order to obtain a definitive identification
of the mass spectrum and its associated peak.

e 8 - Use ?plotlons in the R console to see more details about this function.

IMPORTANT: The ionLib must be built using the chromatograms or CDF
files as they are going to be further analyzed by MetaBox. For example, if
any noise removal processes is applied to a chromatogram at any stage before
compound identification and quantification is performed by MetaBox, these
processes must be applied to this chromatogram before building the ionLib.
This advice applies to libraries built manually or using AMDIS and NIST.
Actually, this advice applies to any software applied to the identification
and quantification of metabolites analyzed by GC-MS data. It is required
because the information contained in the CDF files must reflect the mass
spectra present in the mass spectral library. If a library is built before noise
removal, the proportion between fragments in the ionLib will not match the
proportion of these fragments in the sample or CDF file.

lon Mass Fragments

Fragments
--- TIC
— 43
— 86
— 18
— 42

Intensity
1.5e+08 2.0e+08 2.5e+08
|]

1.0e+08

5.0e+07
1

0.0e+00
L

10.0 10.2 10.4 10.6 10.8 11.0

RT(min)

Figure 3: An example of the plot produced by the function plotIons.

lon Mass Fragments
Spectrum RT: 10.275

Fragments 1
== TIC
— 43
— 8
— 18
— a2

2.5e+08
1

2.0e+08
1
Intensity
06
1

1.5e+08
04

0212

Intensity

0.0 02
L 1
u:
8
:
Io
&
u:
s
8

1.0e+08

5.0e+07
1

0.0e+00
L

10.0 10.2 104 10.6 10.8 1.0

RT(min)
Figure 4: An example of the plot produced by the function plotIons.

3.2 Converting an AMDIS library

The user manual that accompanies the AMDIS installation files contains all the required

information to build a library, therefore, we will not cover this topic in this document.
9

An AMDIS-generated library is composed of two files: a .msl file and a .CID file. For
converting an AMDIS library to the format required by MetaBox, the function buildLib
can be applied using the following code in the R console:

e 1 - Load the MetaBox library, if not yet loaded;

library (MetaBox)

e 2 - Apply the function buildLib to convert the AMDIS library and store it in a
R object called MyNewLibrary (feel free to modify the name of the R object):

MyNewLibrary <- buildLib()

IMPORTANT: Storing the converted library in an R object is not a re-
quirement. It will be saved to a .csv file if the argument save = TRUE, which
is the default behavior of buildLib.

e 3 - A new window called "Select the .msl file of the AMDIS library in use” will
open.

4 - Select the .msl file from the desired AMDIS library and click on choose.

e 5 - A new window called "Select the folder where the output file will be saved” will
open.

6 - Select the folder to save the new MetaBox library and click on Choose.

e 7 - A new file called ion_lib.csv will be saved in the folder indicated above. In
addition, the converted library will be stored in the variable MyNewLibrary.

8 - Use 2buildLib in the R console to see more details about this function.

10

4 Identifying compounds in a metabolomics project:
matchSpectra

The function matchSpectra is the main function of MetaBox. matchSpectra compares
the spectrum of each metabolite present in the ionLib against specific RT windows of
each GC-MS sample in analysis, and generates two reports containing the identified
compounds and their respective abundance in the different GC-MS samples analyzed.
For this, the function matchSpectra uses a system of points to predict which specific
retention time (RT) of the GC-MS samples is most likely to be associated to each mass
spectrum present in the ionLib. For each metabolite in the ionLib, the function match-
Spectra gives points to RTs in the GC-MS sample based on five criteria: the number
of reference ion mass fragments showing a peak at the same RT (total of 4 points); the
number of reference ions showing a positive intensity at this RT (total of 4 points); the
number of reference ions showing the expected intensity in relation to the most abun-
dant reference ion [[MPORTANT: a similarity threshold can be defined by the user to
indicate how similar the intensity of expected and observed ion mass fragments must be
to be considered a positive identification] (total of 3 points); the number of reference ions
showing a positive correlation [IMPORTANT: a correlation threshold can be specified
by the user in order to define the minimum value of the Pearson’s correlation coefficient
to define a positive correlation| (total of 3 points); and the number of reference ions
having their highest intensity at a specific RT (total of 3 points). The maximum score
of a RT is then 18 score points. If two different RTs show the maximum score for a
specific metabolite in the ionLib, the most similar RT value in relation to the expected
RT (the RT defined in the ionLib for this specific compound) is then selected as the
best RT to represent this metabolite. The ion mass fragment defined in the ionLib as
the most abundant fragment, or M1, is used for quantification. The intensity of M1
is obtained as the abundance or intensity of a metabolite. See "Aggio et. al (2014)
Identifying and quantifying metabolites by scoring peaks of GC-MS data. BMC Bioin-
formatics, doi:10.1186/s12859-014-0374-2.” to a description of the steps performed by
matchSpectra.

4.1 Preparing the data to use the function matchSpectra

The function matchSpectra was developed to automatically identify the experimental
conditions associated to each GC-MS sample under analysis. For this, the GC-MS
samples you are willing to analyze must be converted to CDF format and organized
in folders named according to their respective experimental conditions. The ideal way
for organization the GC-MS samples before applying matchSpectra is: (1) create a
folder and give it a name that represents the project involved with the samples to be
analyzed. For example, you can name it as Project_yeast. This folder will be the main
folder of your analysis. It is where all your samples related to the Project_yeast will
be located; (2) save your ionLib inside of the main folder, in this case Project_yeast;

11

(3) now, inside of this main folder, create one additional folder for each experimental
condition. For example, one folder named Experimental_condition_1 and another folder
named Experimental_condition_2; (4) then, allocate each GC-MS file you are willing to
analyze into the folder named after its respective experimental condition. See bellow a
description of how GC-MS samples must be organized:

e Project_yeast

— Experimental_condition_1

x Samplel.CDF
x Sample2.CDF
x Sample3.CDF

— Experimental_condition_2

x Sample4. CDF
*x Sampleb.CDF
* Sample6.CDF

— Experimental_condition_3

x Sample7.CDF
*x Sample8.CDF
x Sample9.CDF

After the GC-MS samples are organized as above, you can proceed to the compound
identification using the function matchSpectra. All the results produced by matchSpec-
tra will be stored in the main folder, or Project_yeast in the example above.

IMPORTANT: GC-MS samples must be converted to CDF format. MetaBox
does not recognize any other format of GC-MS files. Most GC-MS equipment
include a software able to convert results to CDF format.

IMPORTANT: Organizing the GC-MS files as described above is not a
requirement. Alternatively, you can store all the CDF files in a single folder
and apply the function matchSpectra. In this case, a dialog box will pop up
allowing you to select the number of experimental conditions under analysis
and the CDF files belonging to each experimental condition.

4.2 Applying the function matchSpectra

If the GC-MS samples were organized as suggested in the subsection above, you can
apply the function matchSpectra following the steps bellow:

e 1 - Load the MetaBox library, if not yet loaded;

12

[library(MetaBox)]

e 2 - Define the values of the arguments of the function matchSpectra. You can
see all the arguments of matchSpectra using the command ?matchSpectra in the
R console. Here we will describe the arguments we consider most important for
applying matchSpectra, however, we strongly recommend visualizing the help file
obtained with ?matchSpectra:

— dataFolder = this argument must receive the path to the main folder. For
example, dataFolder = ”/Users/You/Project_yeast”. If dataFolder is set as
default, a dialog box will allow you to select the main folder or the folder
containing all the CDF files.

— ionLib = this argument must receive the path to a CSV file containing the
ionLib or an R object containing the ionLib. If ionLib is set as default, a dialog
box will pop up allowing you to select the CSV or the MSL file containing
the ionLib.

— searchWindow = this argument must receive a numeric value which will be
used to calculate the time window used to identify each metabolite in the ion-
Lib. For example, if searchWindow = 0.2 and the expected RT of a metabolite
X in the ionLib is 10 minutes, the metabolite X will be searched by match-
Spectra in the RT window going from 9.8 (10 - 0.2) to 10.2 (10 + 0.2). The
more reproducible or repeatable the GC-MS platform in use is, the smaller
the searchWindow value will be.

— matchFactor = this argument must receive a numerical value going from 0 to
0.99. It indicates proportion of similarity between expected ratios, values in
the ionLib, and observed ratios of fragments, values in the CDF sample. For
example, if matchFactor = 0.7, observed and expected spectra must be at
least 70% similar to be considered as a potential identification. The spectra
similarity is calculated for each fragment in the spectrum. For example, if a
spectrum contains the fragments 54, 74, 102 and 134, the intensity ratio of
fragments 74 and 54, or 74/54 must be at least 70% similar to the value R2
present in the ionLib to generate a positive score. The same applies to the
ratios R3 and R4, or 102/54 and 134/54.

— correlation = this argument must receive a numerical value going from 0 to
0.99. One of the stages in the matchSpectra algorithm is the calculation of
the correlation between ion mass fragments. The argument correlation defines
the minimum correlation coefficient to generate a positive score.

— peakFindMethod = this argument must receive a numerical value of 1, 2 or
3. Each numerical value represents one specific algorithm for detecting peaks

13

in a chromatogram. You may try different methods in order to find which
works the best with your samples.

— scoreCut = this argument must receive a numerical value from 0 to 18. During
the analysis performed by the function matchSpectra, it gives scores to RT
potentially representing metabolites present in the ionLib. Then, two reports
are produced: (1) a report containing all the scored RTs and their respective
potential identities; and (2) another report containing only the compounds
that were most likely present in the analyzed samples. These compounds are
the compounds associated to RTs that received scores higher or equal to the
value defined in scoreCut. For example, if scoreCut = 13, only compounds
associated with RTs that receive 13 or more score points will be reported.

IMPORTANT: Several graphs will be produced for each sample analyzed
by matchSpectra. The argument saveGraphs may be used to disable this
feature.

e 3 - Once the best values for each argument has been defined, you can apply the
function matchSpectra in the R console:

[projectl <- matchSpectra(edit here with your values for each argument)]

e 4 - If dataFolder = default value, a new window called "Select the folder containing
the GC-MS data in CDF format (NetCDF or AIA)” will open;

e 5 - Select the Main_folder (the folder containing the subfolders for each experimen-
tal condition or Project_yeast in the example above) and click on Choose;

e 6 - A new window called "Select a CSV file containing the ionLib or the .msl file
of the AMDIS library in use.” will open;

e 7 - Select an ionLib file and click on Choose;

e 8- The GC-MS files will be analyzed using the defined arguments of matchSpectra
and, according to their values, PDF files containing three different types of graphs
will be saved in the main folder. In addition, two reports and one log file containing
the results will be generated and stored in the main folder.

14

4.3 Analyzing the results produced by matchSpectra

The function matchSpectra generates two reports, one log file and one graph for each
compound in the ionLib, depending on its arguments values. One of the reports gener-
ated by matchSpectra is called MatchReportTotal. It is stored as a CSV file in the main
folder (the Project_yeast of our example) and contains for each metabolite identified in
each sample analyzed: the RT where the metabolite was identified, the difference be-
tween expected RT (the RT defined in the ionLib) and observed RT (the RT where the
compound was actually identified) associated with this metabolite, its score calculated
by matchSpectra and the intensity of the main reference ion mass fragment (M1 in the

ionLib) (See Table 2).

Table 2: MatchReportTotal.csv. matchSpectra generates a report called MatchRe-
portTotal that is stored in a CSV file. This report contains the names of identified
metabolites and for each sample: the Retention Time (RT) where each metabolite was
identified, the difference between expected (the RT defined in the ionLib used) and real
RT (the RT where the metabolite was identified), the score calculated by MetaBox and
the intensity of the ion used as main reference ion (M1 in the ionLib used).

Name RT_Samplel DiffRT_Samplel Score_Samplel Samplel

Replicates 100uL 100uL N 100uL 100uL
ethanol 6.64612 0.002 14 23259136
acetone 7.36968 0.003 16 247545856
isopropyl alcohol 7.57977 0.002 16 82120704
acetonitril 7.9007 0.004 15 86769664
ethyl acetate 10.59667 0.004 16 340213760
1-butanol 13.38012 0.001 18 169279488
2-pentanone 13.95783 0.001 17 369115136
pyridine 16.43788 0.012 16 766640128
zylenel 20.39425 0.001 15 29983744
zylene2 20.6977 0.001 18 86278144
zylene3 21.81225 0.009 17 44974080
benzaldehyde 25.71023 0.002 15 534659072
indole 38.63548 0.001 18 167777920

The second report produced by matchSpectra is called MatchReportCutOff. It is
also stored as a CSV file in the main folder. However, the MatchReportCutOff contains
only those metabolites showing a calculated score equal or higher than the value defined

15

in the scoreCut argument applied. (See Table 3). It is organized with the names of the
identified metabolites in the first column and their abundances in each analyzed sample
in the subsequent columns.

Table 3: MatchReporCutOff.csv. matchSpectra generates a report called MatchReport-
CutOff that is stored in a CSV file. This report is a shortlist of the MatchReportTo-
tal.csv. For every metabolite showing a score equal or above the cutOff score applied
with matchSpectra, MatchReportCutOff contains metabolite’s names in the first col-
umn and the intensity of the main reference ion (M1 in the ionLib) in each analyzed
sample in the following columns.

Name Samplel Sample2 Sample3 Sample6 Sample7 Sample8
Replicates 100uL 100uL 100uL 50ul 50ul 50ul

ethanol 23259136 24012800 24326144 11761664 13939712 15432704

acetone 247545856 285147136 271532032 140296192 183844864 211861504

isopropyl alcohol 82120704 75304960 82141184 40357888 53235712 48267264
acetonitril 86769664 96366592 94244864 47382528 60628992 65150976
ethyl acetate 340213760 437469184 427343872 201703424 242745344 316309504
1-butanol 169279488 176668672 181108736 34881536 51818496 76873728

2-pentanone 369115136 412483584 419954688 195510272 231981056 314114048

pyridine 766640128 858587136 843120640 369508352 415711232 482574336
zylenel 29983744 53858304 41267200 25606144 27378688 35684352
zylene2 86278144 141459456 118910976 75735040 79917056 100077568
zylene3 44974080 82784256 66351104 44204032 43917312 62398464

benzaldehyde 534659072 603521024 589234176 142163968 163987456 207470592

indole 157777920 165347328 181731328 70967296 80273408 86499328

The log file generated by matchSpectra contains the values of the parameters used
when analyzing samples. It stores the path to the mainFolder analyzed, the path to the
ionLib used, the values of the searchWindow, matchFactor, correlation, scoreCut and
peakFindMethod applied among others when analyzing samples. In addition, match-
Spectra generates a line graph for each metabolite identified with a score higher or equal
to the cutOff value applied. This line graph presents a frame or slice of the sample’s
chromatogram where each metabolite was identified. It contains the RT plotted in X
and the intensities of the TIC and the 4 reference ions associated with each compound
(M1, M2, M3 and M4 in the ionLib) plotted in Y (Figure 5).

16

Searching for Ethanol in Sample1.CDF
Spectra match

1.56+08 — Fragments
Tic

— 31

— 45
— 46
29 e I

1.0e+08 —
B Expected intensity

Intensity

5.0e+07 —

0.0e+00 —

6.5 6.6 6.7 6.8

RT(min)

Figure 5: Sample_compound.pdf. For each compound identified, matchSpectra gener-
ates a line graph showing the exactly point where the metabolite was identified and the
intensities of the TIC and the 4 ion mass fragments (M1, M2, M3 and M4 in the ionLib)

associated to each compound.

5 Filtering the MatchReportTotal using the func-
tion filterTotalReport

The analysis performed by the function matchSpectra may be time-consuming depend-
ing on the number of samples to be analyzed and the number of metabolites in ionLib.
Commonly, users must verify if the scoreCut value applied fits with the dataset analyzed
by applying different cutOff values and comparing their results. However, re-analyzing
the whole dataset may take too long. Thus, we created the function filterTotalRe-
port, which allows users to obtain results using different values of scoreCut without
having to re-analyze the whole dataset. For this, the function filterTotalReport fil-
ters an existing MatchReportTotal.csv file and generates a new report containing the
names of identified metabolites in the first column and the intensity of their respec-

17

tive main ion mass fragments (M1 in ionLib) in each analyzed sample in the subsequent
columns. Basically, filterTotalReport allows users to re-generate MatchReportCutOff
files using different values of scoreCut. The CSV file produced by filterTotalReport
has the same format as MatchReportCutOff.csv (Table 3). For applying the function
filterTotalReport, follow the steps bellow:

e 1 - Load the MetaBox library, if not yet loaded:

[library (MetaBox)]

e 2 - Apply the function filterTotalReport selecting the desired scoreCut value:

newReport <- filterTotalReport()

e 3 - A new window called "Select the CSV file containing the input data” will open;

4 - Select the existing MatchReportTotal.csv file generated by the function match-
Spectra and click on Choose.

5 - A new window called "Select the cut off score” will open.

6 - Select the new scoreCut value to be used and click on OK.

e 7 - A new window called "Select the folder where the output file will be saved” will
open.

e 8 - Select the folder where the results will be saved and click on Choose.
e 9- A new CSV file names "filteredReport.csv” will be saved in the chosen folder.

When applying filterTotalReport as described above, the default parameters will
be used. Alternatively, the user may modify any of the 5 arguments used by filterTo-
talReport:

e inputData = a character value defining the path to the CSV file MatchReportTo-
tal.csv or to a data frame containing the report MatchReportTotal.csv.

e scoreCut = a numeric value used to define the value used as cutOff or scoreCut.
Compounds that received a lower score than the value defined in scoreCut will not
be selected to the results (default = open a dialog box allowing the user to select
the score to be used).

18

e save = if TRUE, a CSV file will be generated in the directory defined in folder
(default = TRUE).

e folder = a character value defining the path to the directory where the CSV file
containing the results will be saved (default = open a dialog box allowing the user
to point and click on the selected directory).

e output = a character value defining the name of the report that will be generated
(default = "filteredReport”).

> print(sessionInfo(), locale = FALSE)

R version 3.1.1 (2014-07-10)
Platform: x86_64-apple-darwini3.1.0 (64-bit)

attached base packages:
[1] parallel stats graphics grDevices utils datasets methods

[8] base

other attached packages:

[1] MetaBox_1.0.0 MassSpecWavelet_1.30.0 waveslim_1.7.3

[4] pander_0.3.8 svDialogs_0.9-55 svGUI_0.9-55

[7] xcms_1.40.0 Biobase_2.24.0 BiocGenerics_0.10.0
[10] mzR_1.10.7 Rcpp_0.11.2

loaded via a namespace (and not attached):
[1] codetools_0.2-8 digest_0.6.4 tools_3.1.1

19

